Journal of Organometallic Chemistry, 341 (1988) 145–163 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Donoraddukte des Silanimins Me₂Si=NSi^tBu₃: Darstellung, Stabilität, Reaktivität ^{*,**}

Nils Wiberg* und Klaus Schurz

Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, D-8000 München 2 (B.R.D.) (Eingegangen den 3. August 1987)

Abstract

Silaneimine $Me_2Si=NSi^{t}Bu_3$ (1), which is unstable under normal conditions with regard to dimerization, forms metastable adducts $D \cdot Me_2Si=NSi^{\dagger}Bu_3$ ($1 \cdot D \doteq 3$ with $D = Et_2O$, THF, NEt₃, NMe₂Et), which can be decomposed thermally to give 1 and D and, can thus serve as sources of 1. Adducts $1 \cdot D$ result from $Me_2SiXNLi(Si^{1}Bu_3)$ (X = halogen, amides formed by reaction of Me_2SiXNH- $(Si^{t}Bu_{3})$ with RLi) under LiX elimination in the presence of D and CF₃SO₃SiMe₃. Lewis basicity of D, relative to 1, increases in the order $Et_2O < THF < NEt_3$, $Cl^- < NMe_2Et < F^-$. Similarly resistance of $1 \cdot D$ to decompose into the dimer of 1 and D also increases. Adducts $1 \cdot D$ also decompose by action of excess donor, (viz. $1 \cdot OEt_2$ decomposes in Et_2O into ethylene and $Me_2SiOEt-NHSi^tBu_3$, $1 \cdot NMe_2Et$ decomposes in NMe₂Et under Stevens migration into EtMeNCH₂Si- $Me_2NHSi^tBu_3$). Reaction of adducts 1 · D with water, alcohols and amines, or with organic enes (propene, isobutene, dimethylbutadiene, cyclopentadiene), or with silyl azides ($Me_n^{t}Bu_{3-n}SiN_3$), or with benzophenone, respectively, gives the OH and NH bond insertion products, or ene reaction products, or [2 + 3] cycloadducts, or a [2+2] cycloadduct of 1, respectively.

Zusammenfassung

Das unter Normalbedingungen dimerisierende Silanimin Me₂Si=NSi^tBu₃ (1) bildet mit Donoren metastabile Addukte $D \cdot Me_2Si=NSi^tBu_3$ ($1 \cdot D \triangleq 3$ mit D =Et₂O, THF, NEt₃, NMe₂Et), welche thermisch wieder in 1 und D zerfallen können und somit Quellen für 1 darstellen. Die Synthese von Addukten $1 \cdot D$ erfolgt aus

^{* 27.} Mitteilung über ungesättigte Siliciumverbindungen; zugleich 79. Mitteilung über Verbindungen des Siliciums und seiner Gruppenhomologen. 26. (78.) Mitteilung: N. Wiberg, G. Fischer und K. Schurz, Chem. Ber., im Druck.

^{**} Dedicated to Professor Colin Eaborn in recognition of his important contributions to organometallic chemistry.

Me₂SiXNLi(Si¹Bu₃) (X = Halogen, Erzeugung der Amide aus Me₂SiXNH(Si¹Bu₃) und RLi) durch LiX-Eliminierung in Anwesenheit von D und CF₃SO₃SiMe₃. Die Lewis-Basizität von D bezüglich 1 wächst in der Reihe Et₂O < THF < NEt₃, Cl⁻ < NMe₂Et < F⁻. In gleicher Richtung nimmt die Tendenz der Addukte 1 · D zum Zerfall in das Dimere von 1 und D ab. In Anwesenheit überschüssigen Donors zersetzen sich die Addukte 1 · D darüberhinaus unter Beteiligung der Donoren (z.B.: 1 · OEt₂ zerfällt in Et₂O in Ethylen und Me₂SiOEt–NHSi¹Bu₃, 1 · NMe₂Et zerfällt in NMe₂Et unter Stevens-Umlagerung in EtMeNCH₂SiMe₂NHSi¹Bu₃). Mit Wasser, Alkoholen und Aminen bzw. mit organischen Enen (Propen, Isobuten, Dimethylbutadien, Cyclopentadien) bzw. mit Silylaziden (Me_n^{-t}Bu_{3-n}SiN₃) bzw. mit Benzophenon reagieren die Addukte 1 · D zu Insertionsprodukten von 1 in die OH- und NH-Bindung bzw. zu En-Reaktionsprodukten von 1 bzw. zu [2 + 3]-Cycloaddukten von 1 bzw. zu einem [2 + 2]-Cycloaddukt von 1.

Einleitung

Kürzlich konnten wir zeigen [1], dass sich das labile. rasch dimerisierende Silanimin 1 [2] nach Ersatz von zwei Methyl- durch sperrigere tertiäre Butylgruppen in ein bei Raumtemperatur metastabiles Silanimin 2 verwandelt. Nunmehr wurde gefunden, dass sich das ungesättigte System 1 auch durch Addition von Donoren D (:OR₂, :NR₃, :Hal⁻) "stabilisieren" lässt (Bildung von 3) [3^{*}].

Darstellung von Donoraddukten 3

Die Silylamine **4a,b** lassen sich in Solvenzien wie Pentan, Diethylether oder Tetrahydrofuran (THF) mit Lithiumorganylen RLi (R z.B. Me, "Bu) leicht in Silylamide **5a,b** bzw. Silanimin-Addukte **3a,b** umwandeln (bezüglich der Verbindungsstrukturen sowie der Lage des Gleichgewichts **5** \rightleftharpoons **3** vgl. nächstes Unterkapitel).

Me₂Si NSI [†] Bu₃ ┆ │ X H	(Solvens D) +RLL, −RH	Me ₂ Si NSi ^t Bu ₃ : X····LiD _n	(Solvens D)	Me ₂ S:NS(*Bu ₃) -	(1)
(4 a,X = F ;		(5 a,X ± F,		(3a,× ± ₹ ,	
$4b$, X \pm CU)		$\mathbf{5b}$, X \pm CL)		$\mathbf{3b}$, $\mathbf{X} \equiv \mathbf{C}(1)$	

Während Lösungen von 5a in Pentan, Et₂O bzw. THF oder 5b in THF unter

^{*} Literaturnummern mit einem Sternchen deuten auf eine Bemerkung in der Literaturliste.

Normalbedingungen stabil sind, gilt entsprechendes nicht für Lösungen von **5b** in Pentan bzw. Et_2O .

Das durch Reaktion von **4b** mit ⁿBuLi in Pentan nach Gl. 1 entstehende Amid **5b** (D entfällt) zersetzt sich nach seiner Bildung augenblicklich unter Eliminierung von unlöslichem LiCl in das Silanimin **1**, welches sich durch Addition von ⁿBuLi stabilisiert (vgl. Gl. 2; Bildung von **6b**, Protolyse zu **6d** möglich). Somit erfolgt die Umsetzung von **4b** mit ⁿBuLi in Pentan insgesamt gemäss: **4b** + 2 ⁿBuLi \rightarrow **6b** + ⁿBuH + LiCl. Die intermediäre Existenz von **1** im Zuge dieser Reaktion lässt sich durch Abfangen des Silanimins mit ^tBu₂MeSiN₃ (Bildung eines [2 + 3]-Cycloaddukts, vgl. Ref. [2]) indirekt sichtbar machen.

Die X/R-Substitution (Gl. 2) wird als unerwünschte Folgereaktion der durch RLi-Einwirkung auf 4 erzielbaren H/Li-Substitution (Gl. 1) naturgemäss dann beobachtet, wenn 5 vergleichsweise langsam durch Metallierung (Gl. 1) gebildet wird und rasch durch Austausch von LiX gegen RLi (Gl. 2) weiter reagiert. Offensichtlich erfolgt der H/Li-Austausch (Gl. 1) in Lösungsmitteln abnehmender Basizität (THF > Et_2O > Pentan) abnehmend rasch, wobei MeLi langsamer als ⁿBuLi reagiert, während die Stabilität von 5 hinsichtlich einer LiX-Eliminierung in Solvenzien zunehmender Basizität d.h. steigendem Lösungsvermögen für LiX (Pentan < Et_2O < THF) wächst, wobei 5a eliminierungsstabiler ist als 5b. Somit sind die Bedingungen für eine Bildung von 6 durch Einwirkung von RLi auf 4b in Pentan besonders günstig. Auch in Diethylether (nicht jedoch in THF) führt die Einwirkung von MeLi (nicht jedoch von ⁿBuLi) auf 4b noch teilweise zur Bildung von 6a. Überschüssiges MeLi setzt sich andererseits mit 5b selbst in THF gemäss Gl. 2 unter Bildung von 6a um (Protolyse zu 6c möglich).

In analoger Weise wie **5b** (ohne Donor) in Pentan zerfällt das durch Reaktion von **4b** mit ⁿBuLi in Diethylether nach Gl. 1 entstehende Amid **5b** ($D = Et_2O$) unter Eliminierung von LiCl (in gelöster sowie ungelöster Form) in das Silanimin **1**, welches sich diesmal durch Addition von Et_2O stabilisiert (Bildung des Addukts **3c**). Allerdings erfolgt die Umwandlung nicht vollständig, sondern es setzt sich **5b** ($D = Et_2O$) im Sinne von Gl. 3 mit dem Addukt **3c** und (gelöstem sowie ungelöstem) LiCl ins Gleichgewicht (ca. 85% **5b**, 15% **3c**). Durch Zugabe von Trifluormethansulfonsäure-trimethylsilylester zur Etherlösung lässt sich jedoch das Gleichgewicht vollständig auf die Seite des Addukts **3c** verschieben, da Lithiumchlorid gemäss $CF_3SO_3SiMe_3 + LiCl \rightarrow CF_3SO_3Li + Me_3SiCl$ aus dem Gleichgewicht herausgefangen wird (CF_3SO_3Li bildet als überaus schwache Base kein Addukt mit **1**). Das auf diese Weise gewonnene Addukt **3c** lässt sich als farblose, unterhalb 0°C metastabile Festsubstanz isolieren.

Während **5b** in Pentan (D entfällt) wegen der Unlöslichkeit von LiCl vollständig in 1 übergeht (Verschiebung des Gleichgewichts Gl. 3 nach rechts) und sich das Amid **5b** ($D = Et_2O$) in Diethylether mit dem Addukt **3c** und LiCl (geringfügig löslich in Et_2O) ins Gleichgewicht setzt, ist **5b** (D = THF) in Tetrahydrofuran

$$Me_{2}Si \longrightarrow NSi^{t}Bu_{3} \xrightarrow{(Solvens)} Me_{2}Si \longrightarrow NSi^{t}Bu_{3} + LiCl$$

$$(3)$$

$$(5b)$$

$$(3c, D = Et_{2}O;$$

$$3d, D = THF;$$

$$3e, D = NEt_{3};$$

$$3f, D = NMe_{2}Et)$$

wegen der guten Löslichkeit von LiCl stabil (Verschiebung des Gleichgewichts Gl. 3 nach links). Wieder lässt sich jedoch das Gleichgewicht Gl. 3 durch Zugabe von $CF_3SO_3SiMe_3$ zur THF-Lösung vollständig auf die Seite des Addukts **3d** verschieben. In gleicher Richtung wirkt sich auch ein Zusatz von 12-Krone-4 zur Reaktionslösung aus (Bildung von unlöslichem Li(12-Krone-4)Cl). Die auch auf anderem Wege [4] durch Reaktion des stabilen Silaethens Me₂Si=C(Si-Me₃)(SiMe^tBu₂) mit ^tBu₃SiN₃ in THF zugängliche Substanz **3d** lässt sich in farblosen Kristallen isolieren.

Ähnlich wie 12-Krone-4 bewirken auch Diethylether oder Kohlenwasserstoffe, in welchen LiCl nur wenig oder praktisch nicht löslich ist, eine LiCl-Eliminierung aus **5b** (D = THF). Löst man dementsprechend die nach Abkondensation von THF verbleibende Verbindung **5b** (D = THF) in Diethylether oder Benzol, so erhält man neben LiCl als Bodenkörper Lösungen, die **5b** (D = THF) und das Addukt **3d** im Gleichgewicht enthalten (Et₂O: ca. 60% **5b** (D = THF) und 40% **3d**; C₆H₆: ca. 20% **5b** (D = THF) und 80% **3d**). Durch Zugabe von THF zu den betreffenden Lösungen wird das Gleichgewicht Gl. 3 erwartungsgemäss zur Seite der Verbindung **5b** (D = THF) verschoben (Erhöhung der LiCl-Löslichkeit).

Eine Verschiebung des Gleichgewichts Gl. 3 auf die Seite der Addukte 3 erfolgt naturgemäss auch durch Donoren D, welche wie tertiäre Amine NR₃ aufgrund ihrer hohen Komplexierungstendenz sowohl Lithium als auch Chlorid aus **5b** verdrängen (Bildung von LiD₄⁺, **3**). Fügt man infolgedessen zu **5b** (D = Et₂O) in Et₂O Ethyldimethylamin NMe₂Et zu, so bildet sich das Amin-Addukt **3f** in quantitativer Ausbeute. Die auch auf anderem Wege [3] durch Reaktion des NMe₂Et-Addukts des Silaethens Me₂Si=C(SiMe₃)₂ mit ¹Bu₃SiN₃ in Et₂O zugängliche Verbindung **3f** lässt sich als farblose Festsubstanz isolieren.

Anders als mit NMe₂Et erfolgt mit Triethylamin NEt₃ keine vollständige Umwandlung von in Et₂O gelöstem **5b** (D = Et₂O) in das NEt₃-Addukt **3e**. Die Bildung von **3e** lässt sich jedoch durch Zugabe von $CF_3SO_3SiMe_3$ zur Reaktionslösung vervollständigen und das entstandene Addukt als farblose Festsubstanz isolieren.

Die im Falle der Erzeugung von **3f** aus **5b/3b** praktizierte Methode der Verdrängung eines Donors durch den stärkeren Donor (hier: Cl. durch NMe_2Et) lässt sich allgemein zur Synthese von Addukten **3** nutzen. So bildet sich **3f** darüberhinaus durch Einwirkung von NMe₂Et auf **3c,d,e** (Verdrängung von Et₂O). THF, NEt₃); auch verwandelt NEt₃ die Addukte **3c,d** in **3e** (Verdrängung von Et₂O, THF) und THF das Addukt **3c** in **3d** (Verdrängung von Et₂O).

Struktur und Bindungsverhältnisse der Donoraddukte 3

Nach Strukturuntersuchungen am stabilen Silaethen $Me_2Si=C(SiMe_3)(SiMe_2^{t}Bu)$ [5] und seinem THF- oder F⁻-Addukt [6], am stabilen Silanimin **2** [1] und seinem THF-Addukt [1] sowie am hier interessierenden THF-Addukt **3d** des instabilen Silanimins **1** [1] erfolgt die Adduktbildung ungesättigter Siliciumverbindungen (Silene) unter Verknüpfung der Donoren über eine lange Bindung mit dem ungesättigten Si-Atom der Silene. Entsprechend **3d** sind – wie auch aus den vergleichbaren NMR-Verbindungsspektren (s. unten) folgt – infolgedessen wohl auch **3a,b,c,e** und **f** strukturiert.

Allerdings konnten die Addukte **3a** und **3b** bisher nicht in Substanz isoliert werden. Kondensiert man von den gemäss Gl. 1 in THF gewonnenen Amiden **5a,b** (D = THF) das Solvens im Hochvakuum ab, so verbleiben farblose Festsubstanzen der Zusammensetzung Me₂SiXN(SiBu₃)Li \cdot nTHF (X = F: n = 2; X = Cl: n = 3). In ihnen sind möglicherweise Li(THF)_n-Fragmente ähnlich wie in THF-haltigen Amiden ⁱPr₂SiXN(C₆H₂'Bu₃)Li [7] an das Halogen und/oder an den Amidstickstoff gebunden [8*]. In Übereinstimmung mit der dann vorliegenden asymmetrischen Umbegung von Li⁺ mit Liganden ist das ⁷Li-NMR-Signal der in C₆D₆ gelösten Verbindung Me₂SiClN(Si¹Bu₃)Li · 3THF vergleichsweise breit (Halbwertsbreite wie im Falle des ⁷Li-NMR-Signals von ⁿBuLi in Hexan ca. 6 Hz; bei symmetrischer Ligandenumgebung wie im Falle von LiCl in H₂O oder THF betragen die Halbwertsbreiten der ⁷Li-NMR-Signale nur ca. 0.3 Hz). Mit dem Ersatz des Lösungsmittels C₆D₆ durch THF verschmälert sich das ⁷Li-NMR-Signal von Me₂SiClN(SiBu₃)Li · 3THF (Halbwertsbreite noch ca. 2.5 Hz), was für einen teilweisen Übergang von **5b** in **3b** (Gl. 1) in letzterem Lösungsmittel deutet.

Wie aus den erwähnten Strukturuntersuchungen zudem folgt, ist die Donoraddition an Silene im Sinne von Gl. 4a mit einer geringfügigen Verlängerung der Silendoppelbindung sowie einer leichten Pyramidalisierung des vordem planaren Silen-Siliciumatoms verbunden [1,5,6]. So beträgt im Silanimin 'Bu₂Si=NSi'Bu₃ (linearer Stickstoff) der SiN-Doppelbindungsabstand 1.57 Å und die Winkelsumme am ungesättigten Si-Atom erwartungsgemäss 360° [1], während für die entsprechende Bindungslänge bzw. Winkelsumme im THF-Addukt **3d** (geringfügig gewinkelter Stickstoff) die Werte 1.58 Å und 349° aufgefunden werden [1] (bei regulärer tetraedrischer Umgebung des Si-Atoms ergäbe sich die Summe der Winkel CSiN + CSiN + CSiC zu $3 \times 109.5 = 328.5^{\circ}$). Wie schon aus dem langen Si-O-Abstand (1.89 Å; normalerweise um 1.65 Å) folgt, bleibt also die Addition von D an **1** – offensichtlich als Folge des Bestrebens von Silicium in **3d** zur Ausbildung einer SiN-Doppelbindung – auf halbem Wege stehen.

Der Bindungszustand in 3d (entsprechendes gilt auch für andere Addukte 3 und ganz allgemein für Donoraddukte ungesättigter Si-Verbindungen) lässt sich in

anschaulicher Weise durch Mesomerie einer no-bond Struktur (b) und einer zwitterionischen Struktur (c) beschreiben [9*]. Die für 3 genutzten Formeln mit einem Pfeil zwischen Donor und Silicium (vgl. Gl. 1, 3) sind als Kurzsymbole dieser Mesomerieformel zu verstehen. Mit wachsender Stärke der Donor-Silicium-Bindung nimmt das Gewicht der Grenzformel (c) zu. In gleicher Richtung muss sich dann die SiN-Bindung verlängern und die negative Partialladung am Stickstoff erhöhen. Ersteres wurde durch Strukturuntersuchungen an Donoraddukten des Silaethens Me₂Si=C(SiMe₃)(SiMe₂⁴Bu) nachgewiesen [6], letzteres folgt aus NMR-Spektren: die Addition von THF an 1 ist mit einer beachtlichen Hochfeldverschiebung sowohl des ²⁹Si- als auch ¹⁴N-NMR-Signals verbunden von δ ca. 78 (²⁹Si) und -230 (¹⁴N) (Werte des stabilen Silanimins 2) nach 1 (²⁹Si) und -330 (¹⁴N).

Die angesprochene Stärke der Donor-Silicium-Bindung in 3 erhöht sich naturgemäss mit zunehmender Lewis-Basizität des Donors hinsichtlich des Silanimins 1. Über Verdrängungsreaktionen (vgl. vorstehendes Unterkapitel) liess sich ableiten, dass die Lewis-Basizität der Donoren bezüglich 1 in folgender Donorreihenfolge ansteigt:

 $Et_{2}O < THF < NEt_{3}, Cl^{-} < NMe_{2}Et < F^{-}$

Somit sind Amine hinsichtlich 1 basischer als entsprechend substituierte Ether, wobei in beiden Donorklassen die Basizität mit abnehmender sterischer Beeinflussung wächst. Die hohe, eine starke Komplexbindung bedingende Basizität von NMe₂Et zeigt sich im ¹H-NMR-Spektrum der in NMe₂Et als Solvens gelösten Probe **3f**: es weist sowohl Signale für gebundenes als auch für freies NMe₂Et auf, während sich im Falle von **3c** in Et₂O bzw. **3d** in THF bzw. **3e** in NEt₃ die ¹H-NMR-Signale für gebundenen und freien Donor – wegen raschen Austauschs – nicht unterscheiden.

Thermolyse und Reaktivität der Donoraddukte 3

Die thermische Zersetzung der Addukte 3 führt im ziehenden Vakuum unter Eliminierung der Donoren D zu Dimeren 1_2 des Silanimins 1 (vgl. Schema 1). Die Gasphase über der thermisch behandelten, festen Probe enthält – laut Massenspektrum – im Falle von 3d und 3e (entsprechendes gilt wohl für 3c) ausschliesslich den Donor, im Falle von 3f zusätzlich das Silanimin 1 sowie dessen NMe₂Et-Addukt, was für eine hohe Stabilität und gewisse Sublimierbarkeit von 3f spricht. Eine Zersetzung der Addukte in Donoren und 1_2 beobachtet man auch als Folge der thermischen Behandlung von 5a (ohne Donor) in Pentan. von 3c in Pentan oder Toluol und von 3d sowie 3e in Benzol (bezüglich der in anderer Weise verlaufenden Thermolysen von 5b, 3c in Et₂O sowie 3f s. unten).

Die Geschwindigkeit der thermischen Zersetzung nimmt für 3 mit wachsender Stärke der Komplexbindung (s. oben) ab: 3c zersetzt sich bereits um Raumtemperatur (50% nach 1.5 h in Toluol bei 25°C), 3d bei leicht erhöhter Temperatur (50% in ca. 6 Tagen in Benzol bei 60°C), 3e bei erhöhter Temperatur (50% nach ca. 4 Tagen in Benzol bei 80°C), 3f erst oberhalb 100°C (s. unten) [10 *]. Dieses Ergebnis weist auf eine Bildung der Dimeren 1_2 ($2 \rightarrow 1_2 + 2D$) im Zuge einer Dissoziation der Addukte 3 im Sinne von Gl. 5 mit anschliessender Dimerisierung des hervorgehenden Silanimins 1 hin:

(5)

$$3 \xleftarrow{} 1 + D$$

Gestützt wird diese Vorstellung durch den Befund der starken thermolysehemmenden Wirkung von überschüssigem Donor. Beispielsweise ist das Et_2O -Addukt **3c**, welches sich in Pentan oder Toluol bei Raumtemperatur in einigen Stunden zersetzt, in Diethylether unter gleichen Bedingungen unbegrenzt haltbar; auch nimmt die Geschwindigkeit der Zersetzung von **3e** wegen der mit dem Thermolysefortschritt wachsenden Menge an freiem Donor NEt₃ drastisch ab (nach 0.7, 2, 5, 16, 37 Tagen bei 80°C in Benzol 27, 40, 59, 70, 91%iger Zerfall).

Die Wirkung überschüssiger Donoren, die Dissoziation nach Gl. 5 zurückzudrängen und damit die Zersetzung von 3 in 1_2 und Donor zu hemmen, hat zur Folge, dass sich die Addukte darüberhinaus oder ausschliesslich in anderer Weise unter Mitwirkung der Donoren stabilisieren. So führt etwa die Thermolyse von 3c in Pentan oder Toluol bei 25°C 100%ig, in Diethylether bei 60°C aber nur 10%ig unter Et₂O-Eliminierung zu 1_2 . In letzterem Reaktionsfall bildet sich gemäss Gl. 6 – offensichtlich als Folge einer Deprotonierung von komplexgebundenem Et₂O durch den Iminstickstoff – hauptsächlich (zu 90%) Me₂SiOEt-NHSi^tBu₃ und Ethylen. (5b, D = Et₂O, liegt in Diethylether im Gleichgewicht mit 3c (Gl. 3) und thermolysiert infolgedessen wohl entsprechend 3c in Et₂O.)

 $\begin{array}{c} EtO - C_2H_4 - H \\ \downarrow \\ Me_2Si = NSi^{\dagger}Bu_3 \end{array} \xrightarrow{\Delta} EtO H \\ -C_2H_4 \qquad | \qquad | \qquad (6) \\ Me_2Si = NSi^{\dagger}Bu_3 \end{array}$

Auch der Zersetzung von **3f** liegt eine Protonenübertragung zugrunde: Die Thermolyse dieses Addukts führt in Ethyldimethylamin (aber auch Benzol) überhaupt nicht zum Silanimindimeren 1_2 , sondern gemäss Gl. 7 zu 7a und 7b (in NMe₂Et ist 7a, in C₆H₆ 7b Hauptprodukt). Offensichtlich bildet sich 7a aus 3f im

Sinne einer Stevens-Umlagerung durch Wanderung sowohl eines Wasserstoffs von der NMe-Gruppe zum Iminstickstoff als auch des gebildeten Fragments Me₂SiNHSi^tBu₃ vom Aminstickstoff zum Kohlenstoff der deprotonierten Methylgruppe. Das Amin 7a verdrängt in 3f anschliessend NMe₂Et, wobei das hervorgehende Addukt 3g seinerseits durch Stevens-Umlagerung in 7b übergeht [11*].

Die chemische Reaktivität der Addukte 3 ist beachtlich. Durch Umsetzungen von 3 mit Reaktionspartnern entstehen in der Regel Produkte, die auch aus Reaktionen von 1 mit den betreffenden Edukten hervorgehen. So bilden sich gemäss Schema 1 aus 3 (eingesetzt wurde insbesondere 3f) und Wasser H_2O , Alkoholen ROH, Aminen RNH₂ oder Triethoxysilan (EtO)₃SiH Insertionsprodukte 8-11 von 1 in die OH-, NH- bzw. OSi-Bindung der eingesetzten Verbindungen (vgl. hierzu auch Gl.

Schema 1. Reaktionen von 3 (alle Reaktionen verlaufen unter Abspaltung des Donors D; die Me- und Si¹Bu₃-Gruppen an Si und N wurden der Übersichtlichkeit halber weggelassen).

2), mit organischenen Enen >C=C-C-H wie Propen, Isobuten, Dimethylbutadien, Cyclopentadien En-Reaktionsprodukte 12 und 13 von 1 mit dem Doppelbindungssystem, mit Silylaziden R₃SiN₃ [2 + 3]-Cycloaddukte 14 mit der Azidgruppe (entsprechend reagieren auch Halogenidaddukte 5) und mit Benzophenon Ph₂C=O ein nichtisolierbares [2 + 2]-Cycloaddukt 15a mit der Carbonylfunktion, das rasch mit 3 unter Eliminierung des Benzophenonimins Ph₂C=NSi^tBu₃ in die isolierbare, sehr hydrolyseempfindliche Ringverbindung 15b übergeht [12*].

Schlussbetrachtung

Die Fähigkeit der ungesättigten Siliciumverbindung (des "Silens") 1, selbst so schwache Lewis-Basen wie Et₂O unter Bildung von Donoraddukten ("Silenaten") zu addieren, deutet auf eine vergleichsweise hohe Lewis-Acidität des ungesättigten Siliciumatoms in 1. Sie ist insgesamt höher als die des ungesättigten Siliciumatoms im Silaethen Me₂Si=C(SiMe₃)₂, das – wie kürzlich gezeigt wurde [13] – ebenfalls Donoraddukte bildet. Infolgedessen reagiert 1 mit dem F⁻-Addukt des Silaethens unter Fluoridentzug. Die aufgefundene Reihe von Donoren für 1, geordnet nach steigender Lewis-Basizität (Et₂O < THF < NEt₃, Cl⁻ < NMe₂Et < F⁻) gilt hierbei auch für das betreffende Silaethen. Offensichtlich hat sie für Silene allgemeine Bedeutung.

Ähnlich wie im Falle des – selbst bei -100 °C dimerisierenden – Silaethens Me₂Si=C(SiMe₃)₂ [14] führt die Donoraddition auch im Falle des instabilen Silanimins 1 zu einer Erhöhung der Verbindungsmetastabilität. Die Donoraddukte beider Silene können hierbei thermisch unter Eliminierung des Donors und Rückbildung der – ihrerseits mit angebotenen Fängern reagierenden – ungesättigten Siliciumverbindungen zerfallen. Silene werden somit durch Donoraddition stabilisiert und gespeichert.

Ganz im Sinne einer vorgelagerten Komplexdissoziation wächst – wie oben besprochen – die Stabilität von 3 mit wachsender Basizität und Menge des Donors; auch setzen sich organische Ene mit den Addukten 3 in der Reihe 3c, 3e, 3f, also in Richtung wachsender Dissoziationsstabilität der Silenate, abnehmend rasch um (z.B. benötigt die Vervollständigung der Reaktion mit Dimethylbutadien im Falle von 3c Minuten bei 25°C, von 3d Stunden bei 25°C, von 3f Tage bei 60°C).

Allerdings erfolgen – wie schon die thermischen Zersetzungen von 3c in Et₂O (Gl. 6) oder 3f in NMe₂Et (Gl. 7) lehren – Reaktionen von 3 nicht ausschliesslich auf dem besprochenen Wege. So setzen sich offenbar protonenaktive Verbindungen mit dem NMe₂Et-Addukt von 1 (\triangleq 3f) ähnlich wie mit dem NMe₃-Addukt von Me₂Si=C(SiMe₃)₂ [13] direkt und deshalb selbst bei tiefen Temperaturen rasch – unter Protonenübertragung um. Auf welchem Wege Produkte aus 3 und Silylaziden oder Benzophenon entstehen (3f reagiert in letzteren Fällen bereits bei Raumtemperatur) muss noch geklärt werden.

Ähnlich wie das Silaethen $Me_2Si=C(SiMe_3)_2$ [14] bildet auch das Silanimin 1 (aus 3 oder anderen Quellen [2]) Insertionsprodukte, En-Reaktionsprodukte, [2 + 2]-sowie [2 + 3]-Cycloaddukte (Schema 1). Zum Unterschied von diesem werden aber keine [2 + 4]-Cycloaddukte (z.B mit Butadien, Dimethylbutadien, Cyclopentadien) erhalten; die Tendenz von Silenen für letztere Reaktionen sinkt somit in Richtung Silaethen > Silanimin beachtlich.

Experimentelles

NMR-Spektren: JEOL FX 90Q (Angaben in δ gegen TMS intern (¹H, ¹³C) oder extern (²⁹Si) sowie gegen extern NH₄NO₃/H₂O (¹⁴N) oder LiCl/H₂O (⁷Li)). IR-Spektren: Perkin-Elmer 325. Molekülmassen wurden massenspektrometrisch (CH 7) überprüft. Nach Literaturvorschriften wurden präpariert: Me₃SiN₃ [15], ¹Bu₂MeSiN₃ [16], ¹Bu₃SiN₃ [17,18], Me₂SiF-CLi(SiMe₃)₂ [14]. Zu Vergleichszwecken wurden synthetisiert: Me₃SiNHSi¹Bu₃ und Me₃SiNLiSi¹Bu₃. s. nachfolgend.

Darstellung von **4a**, **4b**, **6a** über ${}^{\prime}Bu_{3}SiNa$, ${}^{\prime}Bu_{3}SiNHSiMe_{3}$ (**6c**) und ${}^{\prime}Bu_{3}SiNH_{2}$ (gemeinsam mit P. Karampatses, E. Kühnel, H. Schuster)

Die Synthese von 4a und 4b erfolgt auf dem Wege:

*Tri-t-butylsilan, 'Bu*₃*SiH*. In Anlehnung an eine Literaturvorschrift beschrieben [19] wurde 'Bu ₃SiH wie folgt synthetisiert: 5.2 g (50 mmol) gasförmiges SiF₄ werden langsam (in Stunden) in eine Lösung von 200 mmol 'BuLi in 250 ml Pentan bei 0 ° C geleitet oder – besser – bei –110 °C einkondensiert (Bildung von 'Bu₂SiF₂ nach: SiF₄ + 2 'BuLi → 'Bus₂SiF₂ + 2 LiF). Anschliessend wird das Reaktionsgemisch nach Erwärmung auf Raumtemp. und Ersatz von Pentan durch 200 ml Heptan 5 h am Rückfluss gehalten (Bildung von 'Bu₃SiH nach: 'Bu₂SiF₂ + 'BuLi → 'Bu₂SiHF + LiF + Me₂C=CH₂; 'Bu₂SiHF + 'BuLi → 'Bu₃SiH + LiF). Nach Abdestillation von Heptan bei 98 °C im Vakuum kondensiert aus dem verbleibenden, zähen Rückstand bei Temperaturen bis 250 °C im Hochvacuum farbloses, flüssiges 'Bu₃SiH (Ausbeute 95%). Reinigung durch Destillation bei 144 °C/100 mbar. Nachweis durch Vergleich mit authentischer Probe [20]. Schmp. 33- 34 °C. ¹H-NMR (CCl₄): 1.12 (s, Si'Bu₃), 3.32 (s, SiH); (C₆H₆): 1.12 (s, Si'Bu₃), 3.48 (s, SiH).

Tri-t-butylsilyl-natrium-Tetrahydrofuran($\frac{1}{2}$), ¹*Bu*₃*SiNa* · 2*THF.* (i) Man tropft im Sinne von Ref. [20] 8.0 g (100 mmol) Br₂ in 20 ml CH₂Cl₂ langsam zu einer Lösung von 20 g (100 mmol) ¹Bu₃SiH in 100 ml CH₂Cl₂. Nach Abziehen aller im Hochvakuum flüchtigen Anteile (HBr, CH₂Cl₂) verbleibt ¹Bu₃SiBr (Ausbeute > 90%) als farbloser Festkörper (Nachweis durch Vergleich mit authentischer Probe [20]. Schmp. 167°C. ¹H-NMR (CCl₄): 1.21 (s, Si¹Bu₃); (C₆H₆): 1.14 (s, Si¹Bu₃). (ii) Eine Lösung von 11.2 g (40 mmol) ¹Bu₃SiBr in 100 ml THF, welche ca. 4.6 g (200 mmol) Natriumdraht enthält, wird 8 h unter Rückfluss gehalten. Hierbei muss kräftig gerührt werden, damit gebildetes NaBr vom Natriumdraht abgeschüttelt wird. Nach Abziehen des Lösungsmittels aus der von unlöslichen Anteilen (Na, NaBr) befreiten rotbraunen Reaktionslösung, Aufnehmen des Rückstands in Pentan, Abfiltrieren von unlöslichem NaBr und Abkondensieren des Pentans verbleibt ¹Bu₃SiNa · 2THF als gelber Festkörper [21] (¹H-NMR (THF): 1.01 (s, Si¹Bu₃); (C₆H₆): 1.47 (s, Si¹Bu₃)). Durch Zugabe von Methanol lässt sich das Produkt in ¹Bu₃SiH überführen. Die Mengenbestimmung von ¹Bu₃SiNa in THF erfolgt durch Titration.

Trimethylsilyl-tri-t-butylsilylamin, 'Bu₃SiNHSiMe₃ (6c) und Tri-t-butylsilylamin, 'Bu₃SiNH₂. Man kondensiert von 40 mmol 'Bu₃SiNa · 2THF in THF das Lösungsmittel bei Raumtemp. im Hochvakuum ab und löst den Rückstand in 100 ml Pentan. Zu dieser auf -78° C gekühlten Lösung werden 40 mmol Me₃SiN₃ in 20 ml Pentan getropft (Bildung von thermolabilem, intensiv gelbem 'Bu₃SiN₃Na(SiMe₃) [21]). Man erwärmt im Falle A das Reaktionsgemisch auf Raumtemp. (N₂-Entwicklung, Bildung von farblosem 'Bu₃SiNNaSiMe₃) und versetzt die Lösung mit 40 mmol MeOH bzw. gibt im Falle B 100 mmol MeOH zur auf -78° C gekühlten Lösung. Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile des von Unlöslichem befreiten Reaktionsgemischs bei Raumtemp. liefert die fraktionierende Destillation im Ölpumpenvakuum im Falle A bei 85°C 'Bu₃SiNH-SiMe₃ im Falle B bei 55°C 'Bu₃SiNH₂.

^{*i*}Bu₃SiNHSiMe₃ (6c). Farblose Festsubstanz, Schmp. 74° C. Elementaranalyse: Gef.: C, 63.13; H, 12.79; N, 4.39. $C_{15}H_{37}NSi_2$ (287.4) ber.: C, 62.63; H, 12.96; N, 4.87%. ¹H-NMR (THF): 0.162 (s, SiMe₃), 1.11 (s, Si^{*i*}Bu₃); (C₆H₆): 0.196 (s, SiMe₃), 1.12 (s, Si^{*i*}Bu₃). ¹³C{¹H}NMR (C₆D₆): 3.83 (SiMe₃), 22.85 (CMe₃), 30.72 (CMe₃). ²⁹Si-NMR (C₆D₆): 1.95 (SiMe₃), 6.34 (Si^{*i*}Bu₃). IR (Film): 3325 cm⁻¹ (ν (NH)). Gibt man zu einer THF-Lösung von ^{*i*}Bu₃SiNHSiMe₃ MeLi in Et₂O, so bildet sich ^{*i*}Bu₃SiNLiSiMe₃ × THF (6a). ¹H-NMR (THF): 0.016 (s, SiMe₃), 1.06 (s, Si^{*i*}Bu₃); (Et₂O): 0.038 (s, SiMe₃), 1.08 (s, Si^{*i*}Bu₃); (C₆H₆): 0. 367 (s, SiMe₃), 1.34 (s, Si^{*i*}Bu₃), 3.40 (m, OCH₂ von 1 THF).

 ${}^{t}Bu_{3}SiNH_{2}$: Farblose Festsubstanz, Schmp. 74°C. Nachweis durch Vergleich mit authentischer Probe [17]. ¹H-NMR (THF): 1.09 (s, Si^tBu₃); (C₆H₆): 1.08 (s, Si^tBu₃).

Chlordimethylsilyl-tri-t-butylsilylamin (4b). Zu einer Lösung von 8.30 g (38.5 mmol) ¹Bu₃SiNH₂ in 100 ml Et₂O tropft man 24.1 ml (38.6 mmol) ⁿBuLi in 25 ml Hexan (Bildung von ¹Bu₃SiNHLi; ¹H-NMR (C_6H_6): 1.14 (s, ¹Bu); Rückbildung von ¹Bu₃SiNH₂ nach MeOH-Zugabe). Das erhaltene Reaktionsgemisch wird anschliessend zu einer Lösung von 4.85 ml (40.0 mmol) Me₂SiCl₂ in 50 ml Et₂O getropft. Laut ¹H-NMR-Spektrum quantitative Bildung von 4b. Man zieht nach Abfiltrieren von LiCl im Ölpumpenvakuum alle flüchtigen Anteile ab und sub-limiert den Rückstand bei 80 °C/Ölpumpenvakuum. Umkristallisation des Sub-limats aus Et₂O bei -78 °C liefert 9.11 g (29.6 mmol; 77%) 4b als farblose, wachsartige, hydrolyseempfindliche Substanz.

Elementaranalyse: Gef.: C, 55.31; H, 10.67; N, 4.43. $C_{14}H_{34}CINSi_2$ (308.1) ber.: C, 54.59; H, 11.13; N, 4.55%. ¹H-NMR (Et₂O): 0.521 (s, SiMe₂), 1.14 (s, Si⁴Bu₃); (C₆H₆): 0.444 (s, SiMe₂), 1.09 (s, Si⁴Bu₃). IR (Film): 3330 cm⁻¹ (ν (NH)).

Fluordimethylsilyl-tri-t-butylsilylamin (4a). 3.25 g (10.5 mmol) **4b** und 1.55 g (12.0 mmol) AgF werden unter Lichtausschluss in 75 ml siedendem THF 60 h lang miteinander umgesetzt. Laut ¹H-NMR quantitative Bildung von **4a**. Man zieht nach Abfiltrieren von AgCl/AgF im Ölpumpenvakuum alle flüchtigen Anteile ab. Die Destillation des Rückstands liefert bei 45°C/Ölpumpenvakuum 2.20 g (10 mmol. 96%) **4a** als farblose, viskose Flüssigkeit.

Elementaranalyse: Gef.: C, 58.89; H, 12.08; N, 4.76. $C_{14}H_{34}FNSi_2$ (291.6) ber.: C, 57.66; H, 11.75; N, 4.80%. ¹H-NMR (THF): 0.252 (d, *J* 6.1 Hz, SiMe₂), 1.12 (s, Si¹Bu₃); (C₆H₆): 0.194 (d, *J* 6.1 Hz, SiMe₂), 1.12 (s, Si¹Bu₃). IR (Film): 3340 cm⁻¹ (ν (NH)).

Darstellung von 5a / 3a

(i) Man tropft zu Lösungen von 0.31 g (1.0 mmol) **4a** in 15 ml Pentan, Diethylether oder Tetrahydrofuran bei -78° C 1.0 mmol ⁿBuLi in 3 ml Hexan. Laut ¹H-NMR der auf Raumtemp. erwärmten Lösungen bildet sich in jedem Falle quantitativ eine neue Verbindung, bei der es sich um *Lithium-fluordimethylsilyl-trit-butylsilylamid (5a)* (ohne Donor bzw. D = Et₂O oder THF) handelt, wie sich aus der Überführbarkeit der Verbindungen in **4a** durch Zusatz stöchiometrischer Mengen MeOH oder Me₃NH⁺Cl⁻ zu den Reaktionslösungen ergibt (bezüglich des Gleichgewichts **5a** \rightleftharpoons **3a** vgl. allgemeinen Teil). ¹H-NMR (Pentan): 0.282 (d. *J* 8.3 Hz, SiMe₂), 1.09 (s, Si¹Bu₃); (Et₂O): 0.165 (d, *J* 8.1 Hz, SiMe₂), verdeckt (Si¹Bu₃), gebundenes und freies Et₂O sind nicht unterscheidbar; (THF): 0.112 (d, *J* 6.8 Hz, SiMe₂), 1.04 (s, Si¹Bu₃), gebundenes und freies THF sind nicht unterscheidbar: (C₆H₆): 0.373 (d, *J* 8.1 Hz, SiMe₂), 1.20 (s, Si¹Bu₃) (die Probe wurde aus **5a** in Pentan durch Ersatz von Pentan durch C₆H₆ gewonnen).

(ii) **5a** (D = Et₂O) entsteht in Et₂O auch im Zuge einer LiF-Übertragung von Me₂SiF-CLi(SiMe₃)₂ auf Me₂Si=NSi^tBu₃ (erzeugt aus Me₂SiF-CLi(SiMe₃)₂ und 'Bu₃SiN₃ [2]) nach folgender Summenreaktion: Me₂SiFCLi(SiMe₃)₂ + ^tBu₃SiN₃ \rightarrow **5a** + (Me₃Si)₂CN₂. Nebenbei bildet sich gemäss Me₂SiFCLi(SiMe₃)₂ \rightarrow Me₂Si=C(SiMe₃)₂ + LiF $\rightarrow \frac{1}{2}$ [Me₂SiC(SiMe₃)₂]₂ + LiF das Dimere des Silaethens Me₂Si=C(SiMe₃)₂ [14]. Die Ausbeute an **5a** (D – Et₂O) steigt auf Kosten der Ausbeute an Silaethendimerem mit abnehmender Reaktionstemperatur und wachsender 'Bu₃SiN₃-Menge; sie beträgt 85%, falls man Me₂SiFCLi(SiMe₃)₂/'Bu₃SiN₃ (Molverhältnis 1/1) bei – 2°C in Et₂O umsetzt [22].

Anmerkungen: (i) Das nach Abkondensieren von THF im Hochvakuum verbleibende Amid **5a** (D = THF) liefert in C_6H_6 folgende ¹H-NMR-Signale: 0.471 (d, J 7.6 Hz, SiMe₂), 1.29 (s, Si^tBu₃), verdeckt + 3.43 (m + m, 2THF). (ii) **5a** und MeOH (Molverhältnis 1/1) ergeben in Benzol **4a** und unlösliches LiOMe. Durch Zugabe von MeOH bis zur vollständigen Lösung von LiOMe verwandelt sich **4a** nach: **4a** + LiOMe \rightarrow LiF + Me₂SiOMeNHSi^tBu₃ (Nachweis durch Vergleich mit authentischer Probe, s. unten).

Darstellung von 5b / 3b

Tetrahydrofuran als Solvens. Zu einer auf -78° C gekühlten Lösung von 0.65 g (2.1 mmol) **4b** in 15 ml THF werden 2.1 mmol MeLi in 1 ml Et₂O bzw. 2.1 mmol ⁿBuLi in 1.5 ml Hexan getropft. In ersterem Fall beobachtet man Gasentwicklung (CH₄), was auf rasche Metallierung bereits bei -78° C weist. Laut ¹H-NMR-Spektren der auf Raumtemp. erwärmten Lösungen bildet sich quantitativ eine neue

Verbindung, bei der es sich um Lithium-chlordimethylsilyl-tri-t-butylsilylamid (5b) (D = THF) handelt, wie sich aus ihrer Überführbarkeit in 4b durch Zusatz stöchiometrischer Mengen MeOH zu den Reaktionslösungen ergibt (bezüglich des Gleichgewichtes $5b \rightleftharpoons 3b$ vgl. allgemeinen Teil). ¹H-NMR (THF): 0.401 (breit, SiMe₂), 1.06 (s, Si^tBu₃), gebundenes und freies THF nicht unterscheidbar. ⁷Li-NMR (THF): -0.345 (Halbwertsbreite 2.44 Hz).

Anmerkungen: (i) Laut ¹H-NMR enthält eine Lösung des nach Abkondensieren von THF verbleibenden festen Amids **5b** (D = THF) in Benzol ca. 20% **5b** (D = THF) und 80% 3d (Nachweis durch Vergleich mit authentischer Probe, s. unten) neben unlöslichem LiCl. ¹H-NMR von **5b** (D = THF) in C₆D₆: 0.817 (s, SiMe₂), 1.29 (s, Si^tBu₃), gebundenes und freies THF nicht unterscheidbar (Protonensignalflächenverhältnis von THF sowie SiMe₂ (5b, 3d) entspricht 3 gebundenen THF-Molekülen pro Molekül des nach Abkondensieren von THF verbleibenden festen Amids 5b). ⁷Li-NMR von **5b** (D = THF) in C₆D₆: -0.320 (Halbwertsbreite 6.59 Hz). (ii) Laut ¹H-NMR enthält eine Lösung des nach Abkondensieren von THF verbleibenden festen Amids 5b (D = THF) in Diethylether ca. 60% 5b (D = THF) und 40\% 3d (Nachweis durch Vergleich mit authentischer Probe, s. unten) neben unlöslichem LiCl. Durch Zugabe von THF zur Et₂O-Lösung wird die Menge an **5b** (D = THF) erhöht, die Menge an 3d erniedrigt. ¹H-NMR von 5b (D = THF) in Et₂O: 0.474 (s, SiMe₂), verdeckt (Si^tBu₃), gebundenes und freies THF nicht unterscheidbar. (iii) Mit MeLi reagiert 5b (D = THF) in THF (MeLi/5b 1/1) weiter gemäss Gl. 2 unter Bildung von Me₃SiNLiSi^tBu₃ (6a). Nachweis des Amids sowie des Hydrolyseprodukts Me, SiNHSi^tBu₂ (6c) durch Vergleich mit authentischen Proben (s. oben).

Diethylether als Solvens. Zu einer auf -78° C gekühlten Lösung von 0.41 g (1.33 mmol) **4b** in 20 ml Et₂O werden 1.33 mmol ⁿBuLi in 1 ml Hexan getropft. Nach Erwärmen des Reaktionsgemischs auf Raumtemp. bildet sich unlösliches LiCl. Laut ¹H-NMR enthält die Lösung dann 85% **5b** (D = Et₂O) und 15% **3c** (Nachweis durch Vergleich mit authentischer Probe, s. unten). ¹H-NMR von **5b** (D = Et₂O) in Et₂O: 0.474 (s, SiMe₂), verdeckt (Si^tBu₃).

Anmerkungen: (i) Das nach Abkondensieren von Et_2O bei $-78^{\circ}C$ im Hochvakuum verbleibende Amid **5b** (D = Et_2O) liefert in Pentan bei Raumtemp. folgende ¹H-NMR-Signale: 0.490 (s, SiMe₂), 1.08 (s, Si^tBu₃), 1.22 (t, J 7.1 Hz, OCH₂ von 2 Et_2O), 3.56 (q, J 7.1 Hz, CCH₃ von 2 Et_2O). Die Lösung enthält – selbst nach 30 h – ausschliesslich **5b** (D = Et_2O); offensichtlich ist die Umwandlung in **3c** gehemmt. (ii) Verwendet man statt ⁿBuLi als Metallierungsmittel MeLi, so reagiert das aus **4b** hervorgehende **5b** (D = Et_2O) teilweise (zu ca. 1/3) weiter gemäss Gl. 2 unter Bildung von Me₃SiNLiSi^tBu₃ (Nachweis nach Überführung in Me₃SiNHSi^tBu₃ durch Vergleich mit authentischer Probe, s. oben).

Pentan als Solvens. Zu einer auf -78 °C gekühlten Lösung von 1.18 g (3.84 mmol) **4b** in 20 ml Pentan werden 3.84 mmol ⁿBuLi in 3 ml Hexan getropft. Beim anschliessenden Erwärmen der Lösung auf Raumtemp. bildet sich – wohl als Folge der nun einsetzenden Reaktion von **4b** und ⁿBuLi – ein Niederschlag. Laut ¹H-NMR-Spektrum enthält die Reaktionslösung ausschliesslich unverbrauchtes **4b**. Der Niederschlag besteht neben LiCl ausschliesslich aus dem Amid ⁿBuMe₂SiNLiSi^tBu₃ (**6b**), welches in THF löslich ist (¹H-NMR: -0.054 (s, SiMe₃), 1.05 (s, Si^tBu₃)) und über sein Protolyseprodukt wie folgt nachgewiesen wurde: Man versetzt die THF-Lösung des Niederschlags mit 0.1 ml (5.6 mmol) H₂O und zieht alle im Ölpumpenvakuum flüchtigen Anteile ab. Die Destillation des verblei-

benden Rückstands liefert bei 80 °C/Ölpumpenvakuum 0.53 g (1.61 mmol; 84%, bezogen auf eingesetztes ⁿBuLi) farbloses, flüssiges *Butyldimethylsilyl-tri-t-butylsilylamin* (**6d**).

Elementaranalyse: Gef.: C, 65.53; H, 12.96; N, 4.41. $C_{18}H_{43}NSi_2$ (329.7) ber.: C, 65.57; H, 13.15; N, 4.25%. ¹H-NMR (THF): 0.158 (s, SiMe₂), 1.12 (s, Si¹Bu₃), verdeckt (SiⁿBu); (C₆D₆): 0.209 (s, SiMe₂), 0.613 (m, SiCH₂), 0.888 (m, CCH₃), 1.13 (s, Si⁴Bu₃), 1.38 (m, CCH₂CH₂C). ¹³C-NMR (C₆D₆): 2.13 (q, SiMe₂), 22.9 (s, 3 CMe₃), 30.7 (q, 3 CMe₃), 19.9 + 26.7 + 26.9 + 14.0 (t + t + t + q, Si-CH₂-CH₂-CH₃-CH₃). ²⁹Si-NMR (C₆D₆): 2.84 (SiMe₂, 6.32 (Si⁴Bu₃); (Et₂O): 2.25 (SiMe₂), 5.76 (Si⁴Bu₃). IR (Film): 3325 cm⁻¹ (ν (NH)).

Anmerkungen: (i) Kondensiert man nach Reaktion von 4b/BuLi in Pentan alle im Hochvakuum flüchtigen Anteile ab und löst den Rückstand in THF, so enthält die Lösung – laut ¹H-NMR – 4b und ⁿBuMe₂SiNHSi¹Bu₃ (6d) im Molverhältnis 1/1. (ii) Beim Umsatz von 4b mit ⁿBuLi im Molverhältnis 1/2 (Pentan als Solvens) entsteht ausschliesslich ⁿBuMe₂SiNLiSi¹Bu₃ (6b). (iii) Tropft man zu einer auf 78°C gekühlten Lösung von 0.30 g (0.98 mmol) 4b sowie 2.09 g (10.5 mmol) ¹Bu₂MeSiN₃ in 10 ml Pentan 0.98 mmol ⁿBuLi in 1 ml Hexan, so entsteht – laut ¹H-NMR-Spektrum der auf Raumtemp. erwärmten Probe – im wesentlichen nur das [2 + 3]-Cycloaddukt des Silanimins Me₂Si=NSi¹Bu₃ und ¹Bu₂MeSiN₃ (Nachweis durch Vergleich mit authentischer Probe [2]).

Darstellung von 3c

Zu einer auf – 78°C gekühlten Lösung von 0.41 g (1.33 mmol) 4b in 20 ml Et₂O werden 1.33 mmol ⁿBuLi in 1 ml Hexan getropft, (Bildung von 15% 3c + LiCl neben 85% **5b** $(D = Et_2O)$, dann – nach Erwärmen des Reaktionsgemischs auf Raumtemp, -0.25 ml (1.38 mmol) CF₂SO₂SiMe₄. Laut ¹H-NMR guantitative Bildung von 3c neben 85% Me₃SiCl + 85% CF₃SO₃Li (in Et₃O löslich) sowie 15% LiCl (Niederschlag). Man kühlt die Reaktionslösung auf $-78\,^{\circ}$ C, kondensiert bei dieser Temperatur den Reaktionsether ab, nimmt den Rückstand in 6 ml Toluol auf und filtriert unlösliches CF₂SO₂Li ab. Anschliessend wird Toluol und Me₂SiCl vom Filtrat bei -30° C im Hochvakuum im Laufe von ca. 12 h abkondensiert und der verbleibende Rückstand in Pentan durch kurzes Erwärmen auf 0°C gelöst. Aus der Pentanlösung kristallisiert bei -78° C N-(Tri-t-butylsilyl)dimethylsilanimin-Diethylether (1/1) (3c) als farblose Festsubstanz aus. ¹H-NMR (Pentan): 0.284 (s. SiMe₂). 1.06 (s, $Si^{4}Bu_{3}$), verdeckt + 3.86 (t + q, J 7.1 Hz, Et₃O); (Et₃O); 0.252 (s, SiMe₂). 1.07 (s, $Si^{t}Bu_{3}$), gebundenes und freies Et₃O nicht unterscheidbar. (C₆D₅CD₃): 0.166 (s, SiMe₂), 1.29 (s, Si¹Bu₃), 0.819 + 3.64 (t + q, J 7.1 Hz. Et₂O). ¹³C{¹H}NMR $(C_6 D_5 CD_3)$: 3.89 (SiMe₂), 24.1 (CMe₃), 31.7 (CMe₃), 14.2 (OCH₃CH₃), 65.8 (OCH_2CH_3) . ²⁹Si-NMR (Et₂O): -1.51 (SiMe₂), -11.1 (Si^tBu₃). Weitere Verbindungscharakterisierung durch thermische Zersetzung und Umwandlung in 3d-f (s. unten). Wegen der Verbindungsinstabilität konnten von 3c keine Elementaranalvsen und kein Massenspektrum erhalten werden.

Anmerkung: Da sich das kristalline Addukt **3c** oberhalb 0° C zersetzt (s. unten), seine Lösung in Et₂O aber unter Normalbedingungen stabil ist, bewahrt man es mit Vorteil in Et₂O auf.

Darstellung von 3d

(i) Zu einer auf -78° C gekühlten Lösung von 0.35 g (1.13 mmol) **4b** in 20 ml Et₂O werden 1.13 mmol ^aBuLi in 1 ml Hexan getropft, dann – nach Erwärmen auf

Raumtemp. – zunächst 0.21 ml (1.16 mmol) CF₃SO₃SiMe₃, anschliessend 2 ml THF (man kann statt Et₂O auch THF als Solvens verwenden). Anschliessend kondensiert man im Hochvakuum bei Raumtemp. alle flüchtigen Anteile ab, löst den Rückstand in 5 ml Pentan, filtriert unlösliches CF₃SO₃Li ab und kristallisiert aus dem Filtrat -78° C N-(Tri-t-butylsilvl)dimethylsilanimin-Tetrahydrofuran (1 / 1) (3d) bei (Ausbeute > 80%) in farblosen Nadeln aus. Nachweis durch Vergleich mit authentischer Probe [4]. ¹H-NMR (Pentan): 0.263 (s, SiMe₂), 1.05 (s, Si^tBu₃), 2.11 + 4.42 (m + m, THF); $(C_6 D_6)$: 0.204 (s, SiMe₂), 1.44 (s, Si^tBu₃), verdeckt + 3.60 (m + m, THF); (Et₂O): 0.241 (s, SiMe₂), verdeckt (Si^tBu₃), 2.00 + 4.17 (m + m, THF); (THF): 0.237 (s, SiMe₂), 1.03 (s, Si^tBu₃), gebundenes und freies THF nicht unterscheidbar. ¹³C{¹H}NMR (C₆D₆): 3.49 (SiMe₂), 24.1 (CMe₃), 31.8 (CMe₃), 24.9 + 70.8 (THF). ¹⁴N-NMR (C_6D_6): -330 (SiNSi). ²⁹Si-NMR (C_6D_6): -4.40 (SiMe₂), -11.1 (Si^tBu₃). Kristallstruktur: [1]. (ii) Man versetzt 0.1 mmol 3c in 1 ml Et₂O bei Raumtemp. mit 0.1 ml (1.2 mmol) THF. Laut ¹H-NMR enthält die Lösung nach Ersatz von Et₂O durch C₆D₆ auschliesslich 3d. Isolierung und Charakterisierung s. oben. (iii) Zu einer auf -78°C gekühlten Lösung von 0.35 g (1.13 mmol) 4b in 20 ml THF werden 1.13 mmol "BuLi in 1 ml Hexan getropft, dann - nach Erwärmen auf Raumtemp. - 2.26 mmol (3.5 ml) 12-Krone-4. Es fällt augenblicklich LiCl · 12-Krone-4. Laut ¹H-NMR-Spektrum enthält die Reaktionslösung nach Ersatz von THF durch C₆D₆ nur 3d sowie 12-Krone-4 (Molverhältnis 1/1). Isolierung und Charakterisierung von **3d** s. oben. (iv) Bezüglich der Synthese von 3d aus Me₂Si=C(SiMe₃)(SiMe₂^tBu) und ^tBu₃SiN₃ vgl. Ref. [4].

Darstellung von 3e

(i) Zu einer auf -78° C gekühlten Lösung von 0.75 g (2.45 mmol) **4b** in 20 ml Et₂O werden 2.45 mmol ⁿBuLi in 1.5 ml Hexan getropft, dann – nach Erwärmen auf Raumtemp. – zunächst 0.45 ml (2.45 mmol) CF₃SO₃SiMe₃, anschliessend 0.70 ml (5.02 mmol) NEt₃ (das Amin kann auch mit **4b** in Et₂O vorgelegt werden). Man kondensiert im Hochvakuum bei Raumtemp. alle flüchtigen Anteile ab, löst den Rückstand in 8 ml Pentan, filtriert unlösliches CF₃SO₃Li (+LiCl) ab und kristallisiert aus dem Filtrat bei -78° C *N-(Tri-t-butylsilyl)dimethylsilanimin-Triethylamin* (1 / 1) (3e) (Ausbeute > 75%) als farblose Festsubstanz aus. ¹H-NMR (Et₂O): 0.325 (s, SiMe₂), 1.05 (s, Si^tBu₃), verdeckt (NEt₃); (C₆D₆): 0.258 (s, SiMe₂), 1.41 (s, Si^tBu₃), 0.630 (t, J 7.3 Hz, NCH₂CH₃), 2.51 (q, J 7.3 Hz, NCH₂CH₃); (NEt₃): 0.320 (s, SiMe₂), 1.04 (s, Si^tBu₃), gebundenes und freies NEt₃ nicht unterscheidbar. ¹³C{¹H}NMR (C₆D₆): 6.22 (SiMe₂), 24.5 (CMe₃), 32.1 (CMe₃), 9.47 + 47.5 (NCH₂CH₃). ²⁹Si-NMR (C₆D₆): -11.1 (Si^tBu₃), -11.2 (SiMe₂). Weitere Verbindungscharakterisierung durch thermische Zersetzung und Umwandlung in **3f** s. unten.

(ii) Man versetzt 0.1 mmol 3c bzw. 3d in 1 ml Et_2O mit 0.1 ml (0.7 mmol) NEt₃. Laut ¹H-NMR enthält die Lösung nach Ersatz von Et_2O durch C_6D_6 ausschliesslich 3e. Isolierung und Charakterisierung s. oben.

Anmerkung: Nach Zugabe von 0.03 ml (0.2 mmol) NEt₃ zu einer Lösung von 0.07 mmol **5b** (D = Et₂O) in 1 ml Et₂O enthält die Reaktionsmischung – laut ¹H-NMR – ca. 80% **3e** und 20% **5b** (D = NEt₃).

Darstellung von 3f

(i) Zu einer auf -78° C gekühlten Lösung von 0.88 g (2.86 mmol) 4b sowie 3.1 ml (28.6 mmol) NMe₂Et in 25 ml Et₂O werden 2.86 mmol ⁿBuLi in 2 ml Hexan

getropft. Nach dem Erwärmen auf Raumtemp. kondensiert man vom Reaktionsgemisch alle im Hochvakuum flüchtigen Anteile ab, löst den Rückstand in 10 ml Pentan, filtriert unlösliches LiCl ab und kristallisiert aus dem Filtrat bei $-78 \degree C N$ -(*Tri-t-butylsilyl)dimethylsilanimin-Ethyldimethylamin* (1/1) (**3***f*) (Ausbeute 80%) als farblose Festsubstanz aus. Nachweis durch Vergleich mit authentischer Probe [3]. ¹H-NMR (Pentan: 0.258 (s, SiMe₂), 1.05 (s, Si⁴Bu₃), 2.61 (s, NMe₂); (Et₂O): 0.257 (s, SiMe₂), verdeckt (Si⁴Bu₃), 2.67 (s, NMe₂), verdeckt (NEt); (C₆H₆): 0.117 (s, SiMe₂), 1.45 (s, Si⁴Bu₃), 1.77 (s, NMe₂), 0.319 + 2.50 (t + q. J 7.3 Hz, NEt); (NMe₂Et): 0.255 (s, SiMe₂), 1.04 (s, Si⁴Bu₃), 2.67 (s, NMe₂), 1.22 + 3.26 (t + q, J 7.3 Hz, NEt), 0.992 + 2.12 + 2.23 (t + s + q, J 7.3 Hz, freies NMe₂Et als Solvens). ¹³C{¹H}NMR (C₆D₆): 1.88 (SiMe₂), 24.50 (CMe₃), 32.05 (CMe₃), 41.51 (NMe₂), 6.50 + 51.00 (NEt). ²⁹Si-NMR (C₆D₆): -8.85 (s, SiMe₂), -10.25 (s, Si¹Bu₃). Weitere Verbindungscharakterisierung durch thermische Zersetzung.

(ii) Man versetzt 0.1 mmol 3c in 1 ml Et₂O bzw. 0.1 mmol 3d oder 3e in 0.5 ml C_6D_6 mit 0.02 ml (0.18 mmol) NMe₂Et. Laut ¹H-NMR enthalten dann die Lösungen nur 3f neben NMe₂Et sowie Et₂O, THF oder NEt₃. Nach Abkondensation aller flüchtigen Anteile im Hochvakuum verbleibt 3f. Charakterisierung s. oben.

(iii) Bezüglich der Synthese von **3f** aus dem NMe₂Et-Addukt des Silaethens Me₂Si=C(SiMe₃)₂ und ^tBu₃SiN₃ vgl. Ref. [3].

Thermolysen von 3, 5

Die thermische Zersetzung der Addukte 3 führt in der Regel unter Eliminierung des Donors zum Dimeren 2,2,4,4-Tetramethyl-1,3-bis(tri-t-butylsilyl)-1,3-diaza-2,4disilacyclobutan [$-Me_2Si-NSi^tBu_3-$]₂ (1₂) des Silanimins 1. Nachweis durch Vergleich mit authentischer Probe [2]. Schmp. 268°C. ¹H-NMR (Et₂O): 0.773 (s, 2 SiMe₂), 1.23 (s, 2 Si^tBu₃); (C₆H₆): 0.791 (s, 2 SiMe₂), 1.24 (s, 2 Si^tBu₃).

Thermolyse von 5a. 5a (ohne D) in Pentan zersetzt sich – laut ¹H-NMR – im Laufe von 7 Monaten bei Raumtemp, quantitativ in I_2 . Anwesendes Me₃SiCl beschleunigt die Thermolyse nicht (vgl. [4]). In letzterem Falle enthält das Thermolysat neben I_2 und Me₃SiCl auch Me₃SiF (offensichtlich gebildet nach: Me₃SiCl + LiF \rightarrow Me₃SiF + LiCl). Stabiler als 5a (ohne D) in Pentan ist offenbar 5a (D = THF) in THF.

Thermolyse von 5b. Kondensiert man von **5b** (D = Et₂O) in Et₂O das Solvens ab und belässt den verbleibenden Rückstand am ziehenden Ölpumpenvakuum, so erfolgt – laut ¹H-NMR – Zersetzung (15% nach 1h, 85% nach 15 h) unter Bildung von 1₂. Nach 10tägigem Erwärmen von **5b** (D = THF) in THF auf 60 °C zersetzt sich – laut ¹H-NMR – das Edukt vollständig in ein Zwischenprodukt unbekannter Konstitution (¹H-NMR: 0.049 (s, SiMe₂), 1.01 (s, Si¹Bu₃); Flächenverhältnis 2/9) sowie ein hieraus hervorgehendes Endprodukt (¹H-NMR: 0.139 (s, SiMe₂), 1.10 (s, Si¹Bu₃); Flächenverhältnis 2/9).

Thermolyse von 3c. (i) Kondensiert man von 0.1 mmol 3c in Et₂O das Solvens bei -78° C ab und erwärmt den verbleibenden Rückstand am ziehenden Ölpumpenvakuum auf Raumtemp. (A) oder löst den Rückstand in 0.5 ml Toluol (B) bzw. 0.5 ml Toluol + 0.1 mmol Et₂O (C) bzw. 0.5 ml Pentan + 0.1 mmol Et₂O (D), so erfolgt Zersetzung von 3c unter Bildung von 1₂ (A: ca. 50% nach 2 h; B: ca. 10% nach 5 min, 50% nach 90 min; C: ca. 15% nach 12 h; D: 100% nach 20 h). In reinem Diethylether zersetzt sich 3c bei Raumtemp. nicht. (ii) Erhitzt man 0.07 mmol 3c in Et₂O im evakuierten und abgeschlossenen NMR-Rohr 63 h auf 60°C, so zersetzt

sich das Addukt – laut ¹H-NMR – vollständig; es bilden sich neben ca. 10% 1_2 90% Ethylen und Me₂SiOEt–NHSi¹Bu₃. Nachweis und Charakterisierung: [3].

Thermolyse von 3d. (i) Beim Erhitzen von 3d auf 60°C am ziehenden Hochvakuum zerfällt das Addukt unter Abspaltung von THF in 1_2 [4]. (ii) Erhitzt man 0.1 mmol 3d in 0.5 ml C₆D₆ auf 60°C, so zersetzt sich das Addukt – laut ¹H-NMR – unter Bildung von ca. 50% 1_2 sowie mehreren nicht identifizierten Verbindungen. Gesamtumsatz (in Klammern Umsatz zu 1_2) nach 1/4, 1, 3, 7, 18, 26 Tagen 16 (12), 28 (20), 42 (28), 49 (36), 74 (37), 79%(39%); vollständige Thermolyse nach 20 h bei 110°C.

Thermolyse von 3e. Belässt man 3e am ziehenden Hochvakuum (A) oder erhitzt man im abgeschlossenen und evakuierten NMR-Rohr eine Lösung von 0.1 mmol 3e in 0.4 ml C_6D_6 auf 80 °C (B) bzw. eine Lösung von 0.5 mmol 3e in 0.75 ml NEt₃ auf 135 °C (C), so erfolgt – laut ¹H-NMR – Zersetzung von 3e unter auschliesslicher Bildung von 1_2 im Falle A, B bzw. von 65% 1_2 und nicht identifizierten Produkten im Falle C (A: nach massenspektrometrischer Untersuchung enthält die Gasphase über 3e ausschliesslich NEt₃; B: Umsatz nach 0.7, 2, 4, 5, 16, 37 Tagen 27, 40, 50, 59, 70, 91%; vollständige Thermolyse nach 30 h bei 110 °C; C: vollständige Thermolyse nach 36 h). Ethylen bildet sich nicht.

Thermolyse von 3f. (i) Das Addukt zersetzt sich – laut ¹H-NMR – bei 100 °C am ziehenden Hochvakuum in 5 h vollständig in 1_2 . Nach massenspektrometrischer Untersuchung enthält die Gasphase über 3f neben NMe₂Et zusätzlich das Silanimin 1 (m/z = 214 ($M^+ - {}^{t}$ Bu), 172 ($M^+ - {}^{t}$ Bu – Propen)) sowie das Addukt 3f (m/z = 287 ($M^+ - {}^{t}$ Bu)). (ii) Nach 30stündigem Erhitzen von 0.168 g (0.487 mmol) 3f in 0.8 ml NMe₂Et auf 135 °C im abgeschlossenen, evakuierten NMR-Rohr zersetzt sich 3f – laut ¹H-NMR – vollständig unter Bildung von ca. 80% 7a und 20% 7b (Nachweis durch Vergleich mit authentischer Probe, s. unten). Nach Abkondensieren von NMe₂Et erhält man durch Destillation bei 70 °C im Hochvakuum 0.101 g (0.292 mmol, 60%) 3-Ethylmethylamino-2,2-dimethyl-1-tri-t-butylsilyl-1-aza-2-silapropan (7a) als farblose Flüssigkeit.

Elementaranalyse: Gef.: C, 63.01; H, 12.14; N, 8.52. $C_{18}H_{44}N_2Si_2$ (344.7) ber.: C, 62.71; H, 12.87; N, 8.13%. ¹H-NMR (CDCl₃): 0.171 (s, SiMe₂), 1.07 (s, Si⁺Bu₃), 1.77 (s, SiCH₂), 2.20 (s, NMe), 0.991 + 2.36 (t + q, J 7.3 Hz, NEt); (C₆D₆): 0.258 (s, SiMe₂), 1.20 (s, Si⁺Bu₃), 1.77 (s, SiCH₂), 2.15 (s, NMe), 0.956 + 2.30 (t + q, J 7.1 Hz, NEt). ¹³C-NMR (C₆D₆): 3.64 (q, SiMe₂), 23.0 + 30.7 (s + q, Si⁺Bu₃), 45.4 (q, NMe), 50.2 (t, SiCH₂), 13.3 + 55.7 (q + t, NEt). ²⁹Si-NMR (C₆D₆): -3.66 (SiMe₂), 6.43 (Si⁺Bu₃). IR (Film): 3170 cm⁻¹ (ν NH). (iii) Nach 25stündigem Erhitzen von 0.2 mmol **3f** in 0.5 ml C₆D₆ auf 135°C (A) bzw. nach 50stündigem Erhitzen von 0.1 mmol **3f** und 0.1 mmol **7a** in 0.5 ml C₆D₆ auf 120°C (B) enthalten die Reaktionslösungen – laut ¹H-NMR – im Falle A ca. 10% **7a** und 90% **7b**, im Falle B ca. 25% **7a** und 75% **7b**. Man destilliert das Solvens und **7a** bis 70°C/ Hochvakuum ab und kristallisiert den Rückstand in Pentan bei -78°C um; 3-Ethylmethylamino-2,2,4,4-tetramethyl-1,5-bis(tri-t-butylsilyl)-1,5-diaza-2,3-disilapentan (**7b**), Schmp. 116°C. Nachweis und Charakterisierung: [3].

Reaktion von 3 mit H₂O, ROH, RNH₂, (EtO)₃SiH

Bildung von 9a. Zu einer Lösung von 0.5 ml (28 mmol) H_2O in 0.5 ml THF werden 0.29 g (0.84 mmol) 3f in 2 ml THF getropft. Laut ¹H-NMR quantitative Bildung von 9a. Die fraktionierende Destillation des Reaktionsgemischs liefert bei

40 °C im Hochvakuum *Hydroxydimethylsilyl-tri-t-butylsilyl-amin (9a)* als farblose Festsubstanz, verunreinigt mit ca. 10% ¹Bu₃SiNH₂ (Bildung aus **9a** während der Destillation, Nachweis durch Vergleich mit authentischer Probe [17]). ¹H-NMR (Et₂O): 0.143 (s, SiMe₂), 1.14 (s, Si¹Bu₃); (THF): 0.122 (s, SiMe₂), 1.12 (s, Si¹Bu₃); (C₆D₆): 0.163 (s, SiMe₂), 1.15 (s, Si¹Bu₃). ¹³C{¹H}NMR (C₆D₆): 2.93 (SiMe₂), 22.8 + 30.6 (Si¹Bu₃). MS (70 eV): $m/z = 232 (M^+ - {}^1Bu, 100\%)$. 190 ($M^+ - {}^1Bu - Propen, 25\%$), 148 ($M^+ - {}^1Bu - 2$ Propen, 75%): darüberhinaus beobachtet man Massenpeaks von ¹Bu₃SiNH₃ sowie (Me₃SiO)_n.

Bildung von 9b. Zu einer Lösung von 0.52 g (1.51 mmol) **3f** in 2 ml Et₂O werden 0.014 ml (0.75 mmol) H_2O gespritzt. Laut ¹H-NMR quantitative Bildung von **9b**. Nach Abkondensieren aller flüchtigen Anteile bei Raumtemp. im Ölpumpenvakuum verbleibt farbloses, festes 2.2,4,4-Tetramethyl-1,5-tri-t-butylsilyl-3-oxa-1,5-diaza-2,4-disilapentan (**9b**), Schmp. 87 °C.

Elementaranalyse: Gef.: C, 59.86; H, 12.07; N, 4.87. $C_{28}H_{68}N_2OSi_4$ (561.2) ber.: C, 59.93; H, 12.07; N, 4.99%. ¹H-NMR (Et₂O): 0.223 (s. 2 SiMe₂). 1.14 (s. 2 Si^tBu₃); (CCl₄): 0.174 (s. 2 SiMe₂), 1.09 (s. 2 Si^tBu₃); (THF): 0.223 (s. 2 SiMe₂), 1.14 (s. 2 Si^tBu₃); (C₆D₆): 0.322 (s. 2 SiMe₂), 1.18 (s. 2 Si^tBu₃). ¹³C(¹H)NMR (C₆D₆): 4.08 (2 SiMe₂), 22.9 + 30.6 (2 Si^tBu₃). IR (Film): 3330 cm⁻¹ (ν (NH)).

Bildung von 8, 10, 11. Bezüglich der quantitativ verlaufenden Reaktionen von 3f mit ROH (R = Me, Et, ⁱPt, ¹Bu, Ph), RNH₂ (R = ⁱPt, ¹Bu, Ph) und (EtO)₃SiH in Pentan bzw. Benzol bei Raumtemp. vgl. Ref. [3]. Die Umsetzung von 3d mit MeOH in Pentan führt analog der Umsetzung von 3f mit MeOH [3] quantitativ zu Me₂SiOMe-NHSi¹Bu₃.

Reaktionen von 3 mit organischen Enen, R_3SiN_3 sowie $Ph_2C=O$

Bildung von 12, 13. Bezüglich der quantitativ verlaufenden Reaktionen von 3f mit Propen, Isobuten, Dimethylbutadien (DMB) und Cyclopentadien in Benzol bei 100 °C vgl. Ref. [3]. Die Reaktionen erfolgen sehr langsam (in Tagen) bereits bei 60 °C. Die Umsetzungen von 3e bzw. 3c mit DMB in Et_2O bei Raumtemp. führen analog der Umsetzung von 3f mit DMB quantitativ zum En-Reaktionsprodukt (die Reaktion benötigt Stunden im Falle von 3e bzw. Minuten im Falle von 3c).

Bildung von 14. Bezüglich der quantitativ verlaufenden Reaktion von 3f mit Me_3SiN_3 und tBu_2MeSiN_3 in Benzol bei Raumtemp, vgl. Ref. [3]. In analoger Weise erfolgt die Umsetzung von 3d in Et₂O mit tBu_3SiN_3 bei Raumtemp, quantitativ unter [2 + 3]-Cycloadduktbildung. Nachweis und Charakterisierung des Cycloaddukts: [2]. Bezüglich der Reaktion von 5b mit tBu_2MeSiN_3 in Pentan vgl. Darstellung von 5b in Pentan, Anm. (iii).

Bildung von 15. Zu einer Lösung von 0.081 g (0.24 mmol) 3f in 2 ml Et₂O bzw. 0.081 g (0.24 mmol) 3d in 2 ml C₆D₆ tropft man bei Raumtemp. 0.043 g (0.235 mmol) Ph₂C=O in 1 ml Et₂O bzw. C₆D₆. Bereits nach dem ersten Tropfen nimmt die Reaktionslösung die gelbe Farbe von Ph₂C=NSi¹Bu₃ an (entsprechendes beobachtet man im Falle von 3d in Et₂O selbst bei -78° C). Laut ¹H-NMR quantitative Bildung von 15b neben NMe₂Et bzw. THF. Nach Abkondensieren aller flüchtigen Anteile im Hochvakuum bei Raumtemp. sublimiert bei 55°C/Hochvakuum farbloses, festes, sehr hydrolyseempfindliches 2.2,4.4-Tetramethyl-1-tri-t-butylsilyl-3-oxa-1-aza-2,4-disilacyclobutan (15b) in ca. 80%. ¹H-NMR (Et₂O): 0.469 (s, 2 SiMe₂), 1.17 (s. Si¹Bu₃). (C₆D₆): 0.510 (s, 2 SiMe₂), 1.14 (s. Si¹Bu₃). ¹³C{¹H}NMR (C₆D₆): 7.13 (2 SiMe₂). 23.3 + 31.7 (Si¹Bu₃). ²⁹Si-NMR (C₆D₆): 3.41 (Si^tBu₃), 15.1 (SiMe₂). MS (70 eV): m/z = 288 ($M^+ - {}^{t}Bu$, 18%), 246 ($M^+ - {}^{t}Bu - Propen$, 6%), 204 ($M^+ - {}^{t}Bu - 2$ Propen, 100%).

Dank

Wir danken der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung der Untersuchungen mit Personal- und Sachmitteln.

Literatur

- N. Wiberg, K. Schurz, G. Reber und G. Müller, J. Chem. Soc., Chem. Commun., (1986) 591. N. Wiberg, K. Schurz und G. Fischer, Angew. Chem., 97 (1985) 1058; Angew. Chem. Int. Ed. Engl., 24 (1985) 1053.
- 2 N. Wiberg, P. Karampatses und Ch.-K. Kim, Chem. Ber., 120 (1987) 1203, 1213.
- 3 Bezüglich der Addukte $D \cdot Me_2Si=NSiMe_n^{t}Bu_{3-n}$ mit $D = NMe_2Et$ und ihrer Reaktivität vgl. auch: N. Wiberg, G. Preiner, P. Karampatses, Ch.-K. Kim und K. Schurz, Chem. Ber., 120 (1987) 1357.
- 4 N. Wiberg und G. Wagner, Chem. Ber., 119 (1986) 1467.
- 5 N. Wiberg, G. Wagner, J. Riede und G. Müller, Organometallics, 6 (1987) 32.
- 6 N. Wiberg, G. Wagner, G. Reber, J. Riede und G. Müller, Organometallics, 6 (1987) 35; N. Wiberg, G. Wagner, G. Müller und J. Riede, J. Organomet. Chem., 271 (1984) 381.
- 7 R. Boese und U. Klingebiel, J. Organomet. Chem., 315 (1986) C17.
- 8 In Et₂O liegt **5b** (D = Et₂O) wohl als Dietherat Me₂SiCl-N(Si^tBu₃)Li \cdot 2 Et₂O vor; es verbleibt nach Abkondensation des Solvens bei -78°C.
- 9 Statt durch mesomere Grenzstrukturen (VB-Methode) lässt sich der Bindungszustand von 3 auch durch eine Wechselbeziehung des mit einem freien Elektronenpaar besetzten Donororbitals (HOMO) mit dem leeren π^* -Orbital des Silanimins (LUMO) beschreiben (MO-Methode).
- 10 Die Zersetzungsgeschwindigkeit der Addukte 5a/3a und 5b/3b hängt u.a. von der Löslichkeit der durch Thermolyse gebildeten Lithiumhalogenide im verwendeten Solvens ab.
- 11 Wegen der Zurückdrängung des NMe₂Et/7a-Austauschs spielt die Umwandlung 7a \rightarrow 7b in NMe₂Et nur eine untergeordnete Rolle, wegen des raschen Übergangs 3g \rightarrow 7b bleibt die Konzentration von 3g ¹H-NMR-spektroskopisch nicht nachweisbar klein.
- 12 Vgl. hierzu die Umsetzung von 2 mit Ph₂C=O, N. Wiberg, G. Preiner und K. Schurz, Chem. Ber., Veröffentlichung in Vorbereitung.
- 13 N. Wiberg und H. Köpf, J. Organomet. Chem., 315 (1986) 9.
- 14 N. Wiberg, G. Preiner, O. Schieda und G. Fischer, Chem. Ber., 114 (1981) 3505; N. Wiberg, G. Preiner und O. Schieda, Chem. Ber., 114 (1981) 2087, 3518.
- 15 N. Wiberg und B. Neruda, Chem. Ber., 99 (1966) 740.
- 16 N. Wiberg und Ch.-K. Kim, Chem., Ber., 119 (1986) 2980.
- 17 P.M. Nowakowski und L.H. Sommer, J. Organomet. Chem., 178 (1979) 95.
- 18 M. Weidenbruch und H. Pesel, Z. Naturforsch. B, 33 (1978) 1465.
- 19 E.M. Dexheimer und L. Spialter, J. Organomet. Chem., 102 (1975) 21.
- 20 M. Weidenbruch, H. Pesel, W. Peter und R. Streichen, J. Organomet. Chem., 9 (1977) 141.
- 21 Vorläufige Mitteilung: N. Wiberg, G. Fischer und P. Karampatses, Angew. Chem. 96 (1984) 58; Angew. Chem. Int. Ed. Engl., 23 (1984) 59.
- 22 P. Karampatses, Doktorarbeit, München 1985.